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CHARACTERIZATIONS OF REAL LINEAR ALGEBRAS*

By Anthony P. Cotroneo
Langley Research Center

SUMMARY

Some characterizations and properties of linear algebras (or hypercomplex sys-
tems) over the field of real numbers are presented with essential definitions and theorems
concerning real linear algebras on which neither the commutative property nor the asso-
ciative property of multiplication is defined. Theorems relating the concepts of normed,
absolute valued, and division algebras are also given.

In addition, algebras which are commutative or associative with respect to multi-
plication are considered. A construction of the algebra of real quaternions is given with
a proof of the classical result of Frobenius which illustrates the unigue place of complex
numbers and quaternions among the algebras. Except for isomorphisms, the real num-
bers, the complex numbers, and the algebra of real quaternions form the only associative
division algebras over the field of real numbers.

The algebra of real quaternions is discussed in detail. It is shown that all automor-
phisms on this algebra are of a specific type. These automorphisms form a group of
linear orthogonal transformations which in turn define the group of all rotations on the
real Euclidean vector space of dimension three. The technique of using quaternions to
describe rigid-body rotations is especially useful in eliminating the singularities (gimbal
lock) existing in the Euler angle rate equations. The illustrations presented point out
many ways in which quaternions can be handled.

INTRODUCTION

The study of linear algebras (or hypercomplex systems) began with W. R. Hamilton's
discovery of quaternions. Hamilton was then primarily interested in the solution of two
problems:

(1) Given an n dimensional vector space, is it possible to define multiplication in
such a way that the resultant system is a field ?

*The information presented herein was submitted as a thesis in partial fulfillment
of the requirements for the degree of Master of Arts, the College of William and Mary
in Virginia, Williamsburg, Va., 1965.



(2) Can the product of two sums of n squares be expressed as a sum of

n squares?

Hamilton defined a quaternion to be a quadruple of real numbers with the operations
(v @ 03, O) + (By By: Bgs By) = (2 + By g + By, 03+ By, 0y + By)
and
(4> 20 @3 9) - (Bp By B3y By) = (Y1> Y20 73 7y)
where

Y1 = By - OBy - agBg - 4By
Y9 = 0By + Ogfy + agBy - oyfg
Y3 = QyBg - gfy + agfy + Py

Vg = OBy + 09P3 - 03By + By

He showed that all the axioms for a field were satisfied with the exception of the commu-
tative law of multiplication. He was also able to obtain the striking identity

2
("12 +ap? + ag? ¢ a42) ' (312 + By? + Py’ + 342) = (”12 +yg” + vyt + 742)

Hamilton's discovery led to a great deal of interest and study in the areas of both
linear algebra and applied mathematics. In mechanics, for example, quaternions have
proved to be a useful tool in the representation of rigid-body rotations. Therefore, the
algebra of real quaternions is treated in detail herein and should be particularly useful
to individuals interested in the application of quaternions to describe rigid-body rotations.

The objective of this paper is to present some characterizations and properties of
both nonassociative and associative linear algebras over the field of real numbers. Also
included is a construction of the algebra of real quaternions from the system of complex
numbers. By use of quaternions, one can construct still another but less attractive
algebra, the eight dimensional Cayley algebra. Because defining this system is very
involved, the system of Cayley numbers has not been presented in this paper. For a
discussion of the properties and a proof of the uniqueness of this system, the reader is
referred to references 1, 2, and 3.
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Many of the theorems discussed in this report are treated in the various refer-
ences. Because of the author's interest in the application of quaternions to rigid-body
motion, this paper was written to present a logical and formal organization of pertinent
material dealing with this subject.

GENERAL CHARACTERIZATIONS

General characterization theorems of algebras over the field of real numbers are
presented, with some definitions essential to the presentation.

Definition: Let A be a vector space of finite dimension n over the field R.
Then A is a linear algebra of order n (or simply an algebra) if there is defined on A
a product xy which satisfies the conditions

x(ay) = (ax)y = axy) (for @ in R and x,y in A)

X(y + 2) = Xy + Xz
(for x,y,2z in A)

(Vy +2)X=yX + zx
If R is the field of real numbers, A is called a real algebra. Also, if A contains
an element ¢ suchthat ex=xe =x forall x in A, A is saidtobe an algebra

with identity and this element is denoted by '"1."" The definition does not assume commu-
tativity or associativity of multiplication on the algebra A.

From this definition is derived the following useful representation of a product
in A. Let €4, €9, -+« € be a basis for A, and let
and

Yy=Yy€1+Yg€gt+ ...+ €

be any two elements in A. Then



is an element in A. Therefore,

eie:i = Z Vijk®k (i, i=1,2, ..., n; Vijk in R)

so that
n
Xy = z Zy ey
k=1
n
z, = Z xiyjyijk k=1,2,... n)
i,j=1

Thus, multiplication of elements in A is completely determined by n3

These constants are called the structure constants of the system. Throughout this paper,
R denotes the field of real numbers and it is understood that A is of finite dimen-
sion n. Also, to avoid confusion, in some instances a dot is used to indicate vector

constants Vijk'

multiplication.
Definition: Let A be a real algebra; A is said to be absolute valued if there is
a function ¢ on A tfo R such that
$(0) =0
¢(x) > 0 (if x#0)
P(xy) = ¢(x) $(y)
o +7y) = o(x) + H(y)

and
¢(ax) = | a| o)

forall x,y in A and @ in R. If these properties hold, ¢ is designated an abso-
lute value function on A. If o¢(xy) = ¢(x)d(y), A 1is said to be a normed algebra and
¢ 1is called a norm function on A,



Theorem 1: Every real algebra is a normed algebra.

Proof: Let A be a real algebra having a basis €1s €9y + « +» €p¢ Multiplication
on A is defined by

€€ = Z Yijk®k
k

where the Yijk's are real. Now, let

for any nonzero real number «. Then Uy, Uy, o 0wy U forms a new basis for A such
that

and where 5ijk = a"’ijk' Let
and

be any two elements in A; then

where

Zy = Z %¥1%1jk

1,]



Now choose «a such that

loijk, érl, G,j,k=1,2 ... n)
so that
|%] érll. 154
1]
Now define
0 = 91 = oy [+ -+ [
for every

in A. Since
o63) = 5] =) Ja = ), ] [75] = I I
k 1,j
and

qb(x+y)=|x+y| =Z|xi+yi|§|x’+|y]

1

¢ 1is a norm function on A and clearly satisfies the remaining properties which must
hold for a norm function. Hence A is a normed algebra and the proof is complete.
This theorem is treated in reference 1.

Definition: A is a division algebra if the equations ax=b and ya=Db always
possess solutions for a # 0.

Theorem 2: Every real absolute valued algebra is a division algebra.




Proof: Let A be areal algebra with absolute value function ¢. For some a
in A, define the mappings

xR = xa
(or R, :x ~ xa) and
xLa= ax

(or La :x —-ax)forall x in A. Then Ra and La are linear transformations

on A. ¥ a#0 and x#0, then ¢(a) >0 and ¢(x) >0 implies that ¢(xa) >0 and
hence xa # 0. Therefore, if a # 0, the null space of R, consists of the zero vector
alone and similarly the null space of L, consists of the zero vector alone. Hence, if
a#0, Ry, and L, are nonsingular linear transformations on A. Thus, it follows
that the equations xa=b and ax=Db canbe solved when a# 0. This theorem is
discussed in references 1 and 4.

Definition: Let A Dbe an algebra and let P and Q be nonsingular linear trans-
formations on A. The algebra A* whose elements are those of A but whose product
operation is defined by x xy = xP - yQ 1is called an isotope of A. Therefore, A
and A* are said to be isotopic.

Theorem 3: If A is a real absolute valued algebra, then A has an absolute
valued isotope with identity. Furthermore, the absolute value function of A is pre-
served in its isotope.

Proof: Let ¢ be an absolute value function defined on A. Since ¢(ax) =|a]|¢(x)
for every real a and x in A, there exists a nonzero element € in A such that
¢(€) = 1. As before, since ¢ # 0 and A is absolute valued, xR, =xe and xL. = €x
define nonsingular linear transformations on A. Let x, z be any elements in A such
that

Then

and

60 = ¢(2R;) = 9(2) = o(xr, 1)



Similarly,
o) = o(xL,"Y)

Now define an isotope A¥ of A by

-1
€

1

xxy=xR " - yL

Since A and A* are the same linear spaces over R, the properties of ¢ involving
addition and scalar multiplication are preserved on A*. Also,

ot xy) = o(xr, 1) - o(yL,t) = o)

for all x,y in A* Therefore, A* is absolute valued and preserves the absolute
value function of A,

Finally, consider the product €2 « y in A*. The product of two linear transfor-
mations R and L is defined by

x(R+L)=(xR)-L

for all x in A. Thus,

€2 xy = GzRe-l - yL -1 e(yL€_1> = (yLe'l)LE =y

for all y in A. In a similar fashion

for all x in A. Hence, €2 is the identity of A*. Discussion of this theorem is

given in reference 1.

Definition: Let A be a real algebra with the basis ey, €g; +  + €. Denote the
vector scalar product of '

x=x1e1+x2e2+...+xnen

and

Y=Y1€1 +Vg€g + .. -+ V€,



by <%, y>. The norm of the vector x is defined by

(x,x)=N(x)=x12+x22+...+xn2

In the theorems which follow, use is made of the fact that the scalar product defines a
nondegenerate and symmetric bilinear form on A - that is,

(X, A>=0 implies x=0
X, =<y,x> forall x,y in A

<X, ay + Bz> = adx, y> + By, z>
for allreal o B8 andall x,y,z in A
ox + By, z) = alx, z2> + B, Z)

n

If A isnot associative, then x" is not uniquely defined in A. Therefore, in

order to give meaning to x7, define
X =X - X n=23,...)
Lemma 1: Let A be a real algebra such that N(xy) = N(x)N(y) for all x,y

in A, If xM=x"1.x where n= 2,3, ... then N(xk) = N®)X for all positive
integers k.

Proof by induction: Let x be any element in A. The lemma is obviously true
for k=1. Now let k be an arbitrary positive integer such that

N(xK) = Nx)K

Then,

N(xk+1) = N(x¥ « x) = N(x¥) N(x) = NE)ENGE) = N
Hence,

N(xK) = NE)k

for all positive integers k.



Theorem 4: Let A be a real algebra with identity. I N(xy) = N(x) N(y) for all
x,y in A, then A is absolute valued and the absolute value function defined on A

is unique.

Proof: Define
o) = x| =+ VNE)

for all x in A, Then

pE+y) = [x+y] =+ fx+y, x+
so that
b+ v0® = =)+ 2fcx ] + [y ]?
By use of the Cauchy-Schwarz inequality,
s 5l = el 2l sl + U5l = (1l + I 1)
and, hence,
o+y) = x+v| = x|+ |v] = 960 + o9

The remaining properties which must hold for ¢ to be an absolute value function
are clearly satisfied and thus A is absolute valued.

To avoid confusion between the identity in A and the identity in R, the identity
in A is denotedby €. Let ¢, €9, €g, « - ., € form a basis for A. If ¢ is an abso-
lute value function on A, then

d(e) = olee) = o(e)o(e)
and, hence,
dle) =1

Now suppose ¢(x) is not unique on A. Then there exists an absolute value func-
tion 6(x) on A such that 6(a) # ¢(a) for some a#0 in A. Therefore, either
6(a) > ¢(a) or 6(a) < ¢(a).

10
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Consider first 9(a) > ¢(a). H

g=2
fal
then
v) =+ (N& = 1

Let

k _

Y = Y€ +Vg€g * .. -+ ¥Yne,
Also

. _6(a o(a) _
6(y) >1 since Q(y)——lgﬁ>"a"—1

Furthermore, by lemma 1,

1=N(yk)=y12+yzz+...+yn2

which implies 'yi l =1. Since 6 is an absolute value function,
e(y)k= e(yk) = lyll o(e) + Iyz' 9(e2) + ...+ lyn\ G(en)
and, hence,

(9(y)k <1+ 9(e2)+ ..t B(en)

But this is impossible since 6(y) >1 and k is arbitrary.

Now consider 6(a) < ¢(a). Since A is absolute valued, it is a division algebra.
Therefore, the equation az = ¢ can be solved whenever a # 0. Let y = |la|z; then

6(y) = || a [|o(=z)
But since

6(a) 6(z) = 0(e) = 1

11



then

_lall, Jall_
W= o@  o@

and
ply) =1

The rest of the proof for 6(a) < #(a) proceeds exactly as that for 6(a) > ¢(a) — that is,
a contradiction is arrived at to the assumption that 6(a) < ¢(a). Hence 0(x) = ¢(x) for
all x in A, sothat ¢(x) is unique.

Lemma 2: Let A be a real algebra such that N(xy) = N(x) N(y) for all x,y
in Ajthenfor all x,y and x',y' in A

(1) <&y, x'y) =<x, x'HON(y)

and
<xy, xy'> = N(xXy, v
(2) <xy, X'y +<xy, 'y = 2<x, XY, YO
Proof: It can easily be established that for all x,y in A
1
<X, ¥ = g[N(x +y) - N(x) - N(y)]
Then
| —_ 1 \] ] —_— 1
xy, x'y> = F[NGxy + x'y) - Nlxy) - Nex y)] = <(x, x"> N(y)
Similarly,
xy, xy"> = NxXy, vy
Therefore,
Kx(y +y"), x'(y + y')> =<x, xDN(y +y')

However,

Ny +y") = 2<y, y> + N(y) + N(y")

12



Hence

Xy +y"), X'y + )0 = 2%, XDLY, ¥ + <X, xDON(y) + <%, x"DN(y')
= 2¢x, XDy, ¥ + Xy, X'YD + &xy', X'yD

Now since

Xy + 3", X'y + ¥ =<5y, X'y + Ky, X'y + &Ky, X'y + <Ky, X'yD

then

&y, X'y + Xy', X'P = 2{X, XD, ¥
This lemma is treated in references 4 and 5 and is used in the proof of the next

characterization theorem.

Definition: Let A and B be algebras over a field F. A one-to-one mapping
Y of A onto B is called an isomorphism of A onto B if the operations of addition
and multiplication are preserved under the mapping — that is,

Waa + po) = a(a) + LyAb)
Wab) = y(a) Y(b)

forall a,b in A and o B in F. Algebras A and B are said to be isomorphic
if there exists an isomorphism of A onto B. By an automorphism of an algebra A is
meant an isomorphism of A onto itself. If a mapping Y is an isomorphism (or auto-
morphism) except that

W(ab) = y(b) Y(a)

Y is said to be an anti-isomorphism (or anti-automorphism).

Definition: An algebra A is termed an alternative algebra if for every x,y
in A, xZy=x(xy) and xy2= (xy)y.

Theorem 5: Let A be a real algebra with identity 1. I N(xy) = N(x) N(y) for
all x,y in A, then A is an alternative algebra with involution (anti-automorphism)
¥ :x -~ X such that

xxX = N(x)-1

13



and
X+ X=T()1 (T(x) is real)

Proof: Let I denote the subspace of A spanned by the identity and let it
denote its orthogonal complement. Then A is a direct sum of I and ™ andis
written A=1(® 1t — that is, every x in A can be written as «@-1+ a for some
real ¢ and a in I‘L. For a proof of this the reader is referred to reference 6,
page 157.

For x=a-1+a in A, define X= a-1 - a and consider the mapping ¥ :x -X
given by Y(x) = X. Clearly

Yax + By) = a(x) + BYy)
It is now shown that
U(xy) = WUy) Ux)
If x'=1 and x is taken in IJ', then by (2) of lemma 2
&y, ¥ + <Xy, ¥ = 2<%, Dy, ¥y =0
for all y,y' in A. Also, by the law of multiplication defined on A,
{a-1)y, y'> -y, (@-1)y> =0

for all real a. Thus,

<xy, ¥ + a1y, y) + <&xy', y> - (a-1)y', y> =0
and

{x + a-l)y, yO = (a-1 - x)y', ¥

for all real @, x in I and y,y' in A. Now, if w= a.l + x, then
wy, ¥ =y, wy'»> forall w,y,y' in A. Similarly, if y'=1 and y isin it

in (2) of lemma 2, {(xz, x") = <{x, x'z) for all x, x',z in A. Combining these results
gives, for all x,y,z in A,

14




<xy, 2> =<y, X2) = yz, x>=<2, yX>

If x=1,then (y, z>=<Z, > Therefore

<xy, z> =<Z, X§>
Thus,

{z,yx>-<z,Xy>=0
which implies that §X¥ =Xy and

Yxy) = XY = X = Uy) ¥(x)

Now suppose that y(x) = Y(y) for some x,y in A. Then, since Y(X) = x,

x = Y(P(x)) = Y(Y(y)) =y

Since Y is an onto mapping, it defines an involution on A.

The subspace I contains all those elements of A left fixed by the involution
and I' containsall x in A such that Y(x) = -x. Since Y(xX) = xX, then xx is
in I, so there exists a real number « such that xx = a.1. Now,

a=adl, ) =<a-1, D =<&X, 1D ={(1x), x) = N(x)
Hence xX = N(x)-1 for all x in A. Also,
xX = NX)-1 = N(x)-1

Finally, since x + X is left fixed by ¥, there is a real number J such that x+ X = g-1.
Now X + X = T(x)-1, where T(x) is a linear functional and is defined to be the trace
of x.

To complete the proof, it remains to show that the alternative law is satisfied for
all elements in A. From the first part of this proof (xy, xz) = (y, X(xz))> for all
X,y,2z in A. But <xy, xz> = NxXYy, z> from (1) of lemma 2. Hence,

{y, ®(xz)) - <y, N(x)-z> = (y, ¥(xz) - (xX)z> = 0

15



This implies that X(xz) = (xX)z. Since there exists some real number g such that

X + X = -1, then

X(xz) = (81 - x)(xz) = (B-1)(x2) - x(xz)

(xX)z = Ec(B-l - x:l z = (B-1)(xz) - %2z,

Hence

2

x(xz) = x%z

for all %,z in A. If (xz, yz)> is considered, it can similarly be shown that
xz2 = (x2z)z

for all x,z in A. Thus A is alternative and the proof is complete. This theorem is

discussed in references 4 and 5.

A direct consequence of this theorem is the following corollary.

Corollary: Let A be a real algebra with identity 1 and let I denote the sub-

space spanned by the identity of A. If N(xy) = N(x)N(y) for all x,y in A, then
every element of A satisfies the quadratic equation x2 - T(x)-x + N(x)-1=0 over I.
Furthermore, the space I is the set of all elements left fixed by the involution

Y(x) = X, whereas 11 isthe setof all a in A such that Y(a) = a = -a.

The proof of the converse to this theorem depends on the validity of the Moufang
identity on an alternative algebra — that is,

(xy)(zx) = x [(y2)x]

forall x,y,z in A. Inview of this, lemma 3 is presented and is of value in proving
the converse to this theorem. Denote the set of all n-tuples of elements in A by A"
and make the following definitions:

Definition: The associator of an algebra A is a function S defined on A3
to A by

S(x, y, z) = (xy)z - x(yz)

forall x,y,z in A.

16




Definition: Let A be an arbitrary algebra and let £ Xqr Xgy o o oy Xn) be a
multilinear function defined on A" to A. The function f is said to be skew-
symmetric provided (1) f takes on the value 0 whenever at least two of its arguments

are equal, and (2) f changes sign whenever two of its arguments are interchanged.

Lemma 3: Let A be an alternative algebra over a field F and define the func-
tion K from A% to A by

K(W" XY, Z) = S(WX, Yy, Z) - XS(W; Yy, Z) = S(X, Yy, Z)’W

forall w,x,y,2z in Aj;then S and K are linear skew-symmetric functions.
Proof: The proof is contained in two parts.

I. That S is linear in x is readily verified by expanding S(ax1+ Bxy, ¥, z)
for any Xy, X9, ¥, 2 in A and @ B in F. Similarly S islinearin y and z. It
is also clear that S(x, x, y) = 0=8(x, y, y) when A is an alternative algebra. There-
fore,

S, y+z, y+2)=8K1y,2z)+8x,2y) =0

and
Sy+2z,y+2,x)=95(z,y, X)+ S(y, 2,x) =0
Thus
S(x, vy, z) = -S(x, z, y) and S(z, y, x) = -S(y, 2z, X)
Finally,

S(X, Yy, Z) = -S(X, z, Y) = S(Z5 X, Y) = —S(ZJ y, X)

Hence S is alinear skew-symmetric function from A3 to A.

II. Now consider the function K. It is immediate that K is linear from the
linearity of S. Also, from the definition of K, note that K(w, X, y, y) = 0. Therefore,

K(W: x5, Z) = "K(W7 X, Z, Y)

17



since
K(W’ X, Y+ 2z y+z)=K(w, X, Y, Z)'*'K(W, X, Z, Y)=0
A function G on A% is now defined by

G(w, x, y, z) = S(wx, y, z) - S(w, Xy, z) + S(w, %, yz) - wS(x, y, 2) - S(w, %, y)z
By expanding all the associators it is found that G(w, X, y, z) = 0 and, therefore,
-K(z, w, X, y) = G(w, X, v, z) - K(z, w, X, y)
Expanding G and K in terms of their associators and applying part I of this lemma

gives

'K(Z, w, X, Y) = S(WX7 Yy, Z) = S(xy, z, W) + S(yz: w, X) - S(ZW) X, Y)

By use of

S(WX, Y, Z) = K(W; X5, Z) + XS(W7 y, Z) + S(X, y, Z)'W

it is found that a cyclic permutation of the elements 2z, w, X, y changes the sign on the
right-hand side of the expression for -K(z, w, X, y) — that is,

K(y’ z, W, X) = -K(Z’ w, X, Y)

Thus, for all w, x,y,2z in A,

K(W, XY, Z) = —K(W, X, 2, Y)

and

K(W’ X, 5, Z) = 'K(Zy w, X, Y)

Since these two permutations of the elements w, X, y, Zz generate the entire symmetric
group of permutations, the skew-symmetry of K has been proved. This lemma is

treated in references 3 and 7.
Lemma 3 is now used to prove the converse to theorem 5.

18



Converse: Let A be a real algebra with identity 1. If A is an alternative
algebra with involution ¢ : X - X, where xX = N(x)-1 and x+X=T{x)-1 (T(x) isa
real number), then N(xy) = N(x)N(y) for all x,y in A.

Proof: First prove the validity of the Moufang identity on A. It can be easily
verified that

(xy)(zx) = x[y(zx)] + S(x, y, 2x)
From lemma 3,
S(x, y, zx) = -S(zx, y, x) = -8(x, ¥, X)-z - x8(z, y, x) - K(z, x, y, X)
and, therefore,
S(x, y, zx) = xS(y,‘ Z, X) =X [(yz)x] - x[y(zx)]
Hence
(xy)(zx) = x [(yz)x ]

for all x,y,z in A. Since x+ X=T(x)-1 for all x in A, then

x%y + (R)y = [x(T&)-1)]y
and

x(xy) + x(%y) = x [(T(x)-1)y]
for all x,y in A. By the law of multiplication defined on A,

[x(T®)-1)]y = T()-(xy) = x [(T&)-1)y]
Therefore, since A is an alternative algebra,
xx)y = x(Xy)

Similarly,

x(yy) = (xy)¥

19



For every x,y in A,

N(xy)-1 = (x7)FR) = (xy) [F(T®)-1 - x)]
= T(x)-(xy)¥ - (xy)(F=)

By the Moufang identity

N(xy)-1 = T() [x(7)] - x [67)x]
= T(x) N(y)-x - N(y)-x2

and, hence,
NGey)-1 = Nv)x [T(x)-1 - x| = N(7)-(8) = N(y) N(x)-1
The converse to theorem 5 is discussed in references 4 and 5.
COMMUTATIVE AND ASSOCIATIVE ALGEBRAS

In the previous section the assumption of commutativity and associativity of multi-
plication concerning real linear algebras was ignored. In this section further character-
izations and uniqueness of real linear algebras having these properties are presented.

Definition: A skew field is a ring in which the nonzero elements form a group
under multiplication. A commutative skew field is called a field.

Theorem 6: Let A be a real division algebra. I multiplication on A is asso-
ciative, then A is a skew field. (If, in addition, A is commutative with respect to
multiplication, then A is a field.)

Proof: I A is associative with respect to multiplication, then A is a ring.
Let a, b be nonzero elements of A. Since A is a division algebra, there is an ele-
ment x in A such that ax =b. Similarly, there is an element y in A such that
by = x. Hence a(by)=ax=Db. Since b# 0 and a(by)= (ab)y, it follows that ab # 0.
Thus A has no nonzero divisors of zero. It can now be shown that A has an identity.

Let a be any nonzero element in A. There exists an element ¢ in A such
that ae =a. Then € # 0. Now ae2 = ae, which implies that €e2=¢ since a _is not a
divisor of zero. Let x be any element in A. Then

x-xe) =0
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and
e(x-€ex)=0

Hence xe = €x =X, so that € is the identity element of A. As before, this element is
denoted by 1.

It is now shown that every nonzero element of A has a multiplicative inverse.
Let a be any nonzero element of A. There existsan x in A such that ax=1.
Then x # 0. Furthermore,

xa - Dx=x(ax) -x=0

Therefore, xa -1=0 or xa=1 and, hence, x is the inverse of a. It has been
shown that the nonzero elements of A form a multiplicative group. Hence A isa
skew field. Furthermore, if A is commutative with respect to multiplication, then A
is a commutative skew field or simply a field. This theorem is treated in reference 8,
pages 18-21.

It shall now be proved that except for isomorphisms, the real and complex numbers
form the only commutative division algebras over the real numbers. As before, the
space spanned by the identity of A is denoted by I. Since A isreal, I is clearly
isomorphic to the field of real numbers.

Definition: An element a in A is said to be in the center of A if ax=xa
for all x in A.

Definition: Let A be a division algebra with identity 1 over afield F. A is
said to be algebraic over a field K if (1) K is contained in the center of A, and
(2) every element a in A satisfies a nontrivial polynomial with coefficients in K.

In this and following theorems the center of A is denoted by C(A).

Lemma 4: I A is a real associative division algebra, then A is algebraic
over 1. Furthermore, each element of A satisfies a nontrivial linear or quadratic
equation over 1.

Proof: Since A is an associative division algebra, A has an identity; since A
is real, I is isomorphic to the field of real numbers. Also, if @ is any real number,
then by the rule of multiplication defined on A, (a-1)a = a(a-1) for all a in A.

Thus 1 is contained in C(A).

Since A is associative, the product of k factors a can be expressed by ak,
If A isof order n, the setof n+ 1 elements (that is, 1, a, a2, .. ., an) are linearly
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dependent with respect to R. Hence there exist real numbers Qg, Oy oo O, not all
zero, such that

ag-l+aqa+ a2a2+ .. .+anan=0

Therefore a is a root of an equation of degree =n with coefficients in I. If

n

pP(x) = ag-1 + QX+ ..k oX

and since I is isomorphic to R, by the fundamental theorem of algebra
p(x) = £, () . . . £ (%)

k =n, and fi(x) is of degree 1 or 2. Since p(a)=0, some f;(a)=0 andthus a is
a root of a linear or quadratic equation over I. This lemma is discussed in reference 9,

page 10.
Lemma 5: Let A be an associative division algebra over the field C of com-
plex numbers. If A is algebraic over c*= C-1, then A= C*

Proof: Since A is algebraic over C* and if a is any element of A, there
exist complex numbers Cp C1s €95 + - +» Ty not all zero, such that

co-l+c1a+...+cnan=0

Again, by making use of the fundamental theorem of algebra, the polynomial

px)=cyl+cyx+. ..+ cnxn

can be factored into a product of linear factors — that is,
p(x) = (x - Al-l)(x - 7\2-1)(x - 7\3-1) “ e (x - An-l)
where Ay, A9, .+ . o, A, arein C. Now since p(a) = 0, some
a- Ai-l =0

Hence a isin C* and it has been shown that A € C* Since A is algebraic
over C* C* &S A. Therefore, A= C*. This lemma is treated in reference 6,

pages 326-32"7.
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Theorem 7: Let A be a real associative division algebra. If A is commuta-
tive, then A is isomorphic to either the field of real numbers or the field of complex
numbers.

Proof: By lemma 4, A is algebraic over I and hence I, which is isomorphic
to R, is contained in C(A). Suppose that I # A;then there exists an a in A which
is not in I. Therefore, a satisfies some quadratic equation with real coefficients.
Otherwise, a would be in I. Let

p(x) = x2

+ 20x% + ao-l
such that p(a) = 0 and where «@ and a, are real. Then

(a + oz-l)2 = a2.1 - ozo-l

Forany x in A and 9' in R, if x2='y'-1 and v' > 0, there is a real number v
such that

Then
x2 2921 = (x+ p1)x - 1) = 0

which implies that x = #y-1. Hence al - agy < 0 for if this were positive, there would
exist a ¢ in R such that

a+a-l= w1

However, this implies that a is in I. Hence, there is a real number B such that
a2 - ag = —/32. Therefore

@+ a-1)2= 21

Thus, if a isin A but not in I, real numbers ¢, B can be found such that
2
GL&% - -1
B
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Set

i= (a +Ba-1)

so that 2= -1 and, hence, A contains I + I.i which is isomorphic to the field of
complex numbers. This field is denoted by C*. It remains only to show that A = C*

Since A is algebraic over I, then A is algebraic over C* If a in A satis-
fies a polynomial with coefficients in I, then a clearly satisfies a polynomial with
coefficients in C* Also, C* € C(A) since A is commutative. Therefore, by
lemma 5, C*= A and the proof is complete. This theorem is treated in reference 6,

page 327.

The property of commutativity on A is now dropped and the characterization of
real division algebras which are associative is continued.

Theorem 8: Let A be an associative division algebra. For some a contained
in A, let R, and L, be the linear transformations on A such that xR, =xa and
xL, =ax for all x in A. Then A is isomorphic to

AR= {RX 'x in A}
and anti-isomorphic to
AL = {Lxlx in A}

Proof: Define ¥(x)=Ry for all x in A and show that ¥ defines an isomor-
phism of A onto AR. First consider

'P(O!X + BY) = RC!X+BY
for x,y in A and @, 8 in R. Note thatfor any a in A

aR sy = a(ax + gy) = a(aRx) + B(aRy)

Hence

Rax+By = aRX + BRy
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so that
Y(ax + y) = a(x) + (y)

Now consider Y(xy)=R,,. For a in A,

v
aRyy = a(xy) = (ax)y = (aRy)Ry = a(Ry Ry )
Hence
Fay = Ry
so that

xy) = UUX) WUy)

Finally, suppose ¥(x) = y(y) and let a be any nonzero element in A. Then
aRy = a.Ry so that a(x -y) =0 and, since A 1is an associative division algebra,
x =y. Therefore, since Y is an onto mapping, A is isomorphic to AR'

Now consider the mapping y¥'(x) = Ly. Note that for a in A,
aLyy = (xy)a = x(ya) = (aLy) L, = a(Ly-Lx)
Hence
Y (xy) = ¢'(¥) ¢ (%)

so that Y’ defines an anti-isomorphism from A onto AL.

Thus, if A is an associative division algebra with basis ej, ey, .. ., € and if

X=X161+X232+...+Xnen

is any element in A, then
x-——leel+x2Re + .+ x R

2 noe,
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under the mapping ¥ and

X -——x1L

+ XL, +...+x L
ey 2 eq n-e,
under the mapping y'. Therefore, Re , Re s e e ey Re form a basis for AR and
1 2 n
L L , L e form a basis for AL. This theorem is treated in reference 10.

ey Loy« -
pages 240-241.

n

Theorem 9: Let A be a real associative division algebra; then the algebras AR
and AL of linear transformations on A are isomorphic to algebras of real nXn

matrices.

Proof: Let

where X4 is real and € €9, -+ - €, form a basis for A. Now xRa =xa isin A
so that

xRa=xa=y=y1e1+y2e2+ - ety €

y= z xje;|R, = Z %; (eiRa)
1 i
and
e1Ra = Z aIJe]
]
Now
v=xRy =) %) e ) ) oy
i j] j\i

and, hence,

with the matrix (aij) denoted by m(Ra). Thus, the linear transformation Ra which

26



sends the vector x having components (xl, Koy « o 0 X into the vector y having
components (yl, Vg « « o yn) can be represented by the real n Xn matrix (aij) where

eiRa = z aijej'
]
The mapping G(Rx) = m(RX) for all x in A is now shown to define an isomor-
phism of AR onto M(AR) = {m(RX) IRX in AR}.

First, note that for real @ g and Rx’ Ry, in AR

9(01RX + BRY> = m(aRx + BRY) = am(Rx> + Bm(Ry)

since
e (aRX + BRY) = a(ein) + B(eiRy)
Suppose
e1Rx = Z alle]
i
and
e]Ry = Z B]kek
k
then
e3(RaRy) = ), ey(6Ry) =, @ ), Fici
] ]
Therefore,

which implies that
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that is,
m(RyRy) = (7yc) = ) @y

Hence
Now suppose Q(RX) = B(R ); then m(RX - Ry) =(0). If

each ozi]. =0 so that

ei(Rx - RY) = ei(x -y=0

which implies that x =y so that Rx = Ry. Hence the mapping 6 1is an isomorphism
of AR onto M(AR)'

Similarly, if

(o) - {m(is) [ 12 )

it can be shown that the mapping 6' defined by

(1) m{tz)

for all x in A is an isomorphism of AL onto M(AL). This subject is discussed
in reference 10, pages 202-213.

Corollary: Let A be a real associative division algebra; then A is isomorphic
to the algebra M(AR) and anti-isomorphic to the algebra M(AL).

Definition: The isomorphism A= M AR) is known as the first regular repre-
sentation of A and the anti-isomorphism A = M(AL) is called the second regular
representation of A.

Hence, given an associative division algebra A with basis €4, €95 « + « €,
there is for any
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in A the following correspondence:

x«—»lee +X2Re +...+X R

1 2
and
X —x,m(R +Xom(R +...+x m(R

17(Tey) 2™ (Pey) n™(Fe,)

Similarly
x —L, — m(Lx)

An example of a regular representation of the algebra of complex numbers is as
follows: Let C denote the algebra of complex numbers. Then 1,i is a basis for C,
so that for any a + i in C

a+ i — aR, + fR; — am(Rl) + Bm(Ri)

where m(Rl) is given by

IR, =1+ 0i
iR1 =0+1i
and m(Ri) is given by
1Ri =0+1i
iR, = -1+0i

Therefore,

b )l ) )
a+ fi — + B =
0 1 -1 0 -B a

Since C is a commutative algebra, the first and second regular representations of C
are identical.
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The algebra of real quaternions is constructed by imitating the construction of the
complex numbers. Again, let C denote the algebra of complex numbers.

Consider the set Q of all ordered pairs (a, b) where a, b are complex numbers.
For all complex numbers a, b, ¢, d the operation of addition on Q is defined by
(a, b) + (¢, d) = (a + ¢, b + d). Scalar multiplication is given by c(a, b) = (ca, cb). Under
the given operations, Q is a vector space over the field of complex numbers. Each
(a, b) in Q can be expressed as

(a, b) = a(1, 0) + b(0, 1)
Multiplication on Q is defined as follows:
(a, b)(c, d) = (ac - db, da + bc)

where the bar indicates the complex conjugate. The multiplicative identity is clearly
1=(1,0). ¥ j=(0, 1), then j2 = -1. Now, every (a, b) in Q is uniquely expressible
in the form

(a, b) = a-1 + bj

and the rule of multiplication on Q can be written as
(a-1 + bj)(c-1 + dj) = (ac - ~Jb) -1 + (da + bC)j
Let a=ag+ al\/——l_ and b= ay+ %ﬁ, where ag, ), a,, a5 are real; then,
(a, b)=a:1+bj=agl+ ozlx/ri-l + agj + oz3\/jj

Let (/:—1, 0) =i and (0, /-_1) = k. Thus, each element (a, b) in Q is uniquely repre-
sented in the form

(a, b) = ao-l +ogi+agj+ agk

By this rule of multiplication is computed the following table which also defines multi-
plication on Q:

12=j2—k2=-
ij=-ji=k
jk=-ki=1i
ki = -ik =
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Under this rule of multiplication,
Q= {ao-l +aql+ o)+ oz3k ®g, @y, Cg, Qg real}

is a real associative algebra with identity. The elements of Q are known as quater-
nions and Q is called the algebra of real quaternions.

Theorem 10: The algebra of real quaternions is an absolute valued algebra.
Proof: Apply the converse to theorem 5. First, for every q in Q define the
quaternion conjugate of q by

q=ayl- (ali + Qo) + a3k)

By simple multiplication it can easily be shown that the mapping y¥/(q) = q defines an
involution on Q. Similarly, it can be shown that qq = N(g)-1 for all q in Q.
Finally, define T(q)-1=q+ q for all q;then T(g) is clearly real. Since Q is
associative, N(pq) = N(p) N(q) and the proof is complete.

This section is concluded with the following proof of the uniqueness of the algebra
of real quaternions.

Theorem 11: Let A be a real associative division algebra. If A is not commu-
tative, then A 1is isomorphic to the algebra of quaternions.

Proof: It is first shown that I = C(A). By lemma 4, I € C(A). Suppose there
exists an element a in C(A) such that a isnotin I. Then, as previously shown,

2
there would exist real numbers @, 8 such that (%) = -1. Thus, C(A) would

contain a field C* isomorphic to the field of complex numbers. Hence, A would be
algebraic over C* and therefore by lemma 5, A= C*. This contradicts the assumption
that A is not commutative. Therefore, I= C(A).

Let a be any element of A such that a isnotin I and take i-= (M)

B
such that 12= -1, Then i isnotin I so there exists anelement b in A such
that

c=bi-ib#0

Note that

2

ic + ci = i(bi - ib) + (bi - ib)i = ibi - i%b + bi% - ibi= 0
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so that ic = -ci. Furthermore,
ic2 = (ic)e = -(ci)c = c(ci) = c2i

2

so that ¢ commutes with 1i.

Now c satisfies some quadratic equation over I. Let

c2+9c+6.1=0 (y, 6 real)

Since

yc = -c2 - 81

then yc¢ commuies with i. Hence
vel = iye = yie = -ycei

and 2yci=0. Since 2ci# 0 and A is a division algebra, 7y = 0. Therefore
c¢2=-5.1, Also ¢ cannotbe in I since ic = -ci. Hence & >0 sothat 5= §2

(¢ real).
Let j=%ﬂmnj2=-L Also,
ci+ic _ 0

ji+ij=

and, therefore, ij= -ji. Let k= ij.
Hence A contains the algebra C*+ C*j which is isomorphic to the algebra of
real quaternions. This algebra is denoted by Q%

Finally it is shown that Q*= A. Suppose Q # A. Then for some x in A but
not in Q*, an element ! can be determined in A which is not in Q* and such that
lz = -1. Now i+l are roots of quadratic equations over I. For real 0y, Ag, By Bys

let

(i+l)2+ ozl(i+l)+ ag:1=0

and

(i-0%+ By -0+ Byl=0
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Hence
G+0%=-21+il+li=-a,G+10) - ayl
and
G-0%=-21-i0-1i= ~Byi - 1) - Byl
Adding gives
(al + Bl)i+ (al - Bl)l + (az + By - 4)-1 =0

Since 1, 1,1l are linearly independent,

oy = Bl =0
and, therefore,
iZ+li=ea-1
Similarly,
jl+j=p1
and
kl + 1k =y-1
Thus
k=Q)j=(a-1-)j=aj-i(B1-jl)=aj -pi+k
Then

2kl = y-1+ Bi - o
Multiplying by k gives

“2l=vyk + Bj + ai

(@ real)

(B, v real)
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This result implies that [ is in Q* and contradicts the assumption that Q* # A.
Hence A =Q* and the proof is completed. This theorem is treated in reference 6,
pages 327-329, and in reference 4, pages 100-112.

From some of the previous results the following corollary can be stated.

Corollary: Let A be a real associative absolute valued algebra. Then A is
isomorphic to the real numbers, to the complex numbers, or to the real quaternions.

THE ALGEBRA OF REAL QUATERNIONS

Let Q denote the algebra of real quaternions.

Theorem 12: Let p be a fixed nonzero quaternion. Then 6(q) = pqp"1 is an

automorphism on Q. Furthermore, every automorphism on Q is of this type.

Proof: Since Q is an associative division algebra, every nonzero element of Q

has a unique inverse. Consider

6(q) = pap ™1

for all q in @ and some fixed nonzero element p. If qq, 4y are arbitrary elements
in Q@ and o B are real, then

0(aqy + Pag) =p(aq + qu)p'1 = ozpqlp'1 + quzp'1

and, hence,
6(@qy + fay) = @6(qy) + B9(dp)
Also
0(ay93) = pql(p'lp)qu'1 = (pqlp'l) (pqu'l)
so that

?(91%2) = %(%1) (%)

Finally, if e(ql) = 9(q2 ), then qq = 9y since Q does not have any nonzero divisors
of zero. Since @ is an onto mapping, 4 is an inner automorphism on Q.
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Now suppose 8' is an automorphism of Q and let
6'(@) = q'
Suppose that under the mapping 60'

1—1
j“’ez

then 1, ey, €9, €5 obey the same rule of multiplication as defined for 1, i, j, k. There
now exist elements Pys Py, Pg in Q such that

p1=e3j—e2k+e1+i
p2=e1k—e3i+e2+j
p3=e21-e1j+e3+k

It is now shown that for every q in Q

a'pPy = Pqa

a'Py = Pod
and

q'Pg = P3q

where q' is the image of ¢ under the mapping 6'. By using the previously described
rule of multiplication on Q,

e4py = -e2j - e3k -1+ eli
and
pli = -e3k - e2j + eli -1
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so that

Py = Pyl
Similarly,

©gP1 = Pyl
and

e3Py = Pek
Hence for every ¢q in Q,

q'Py = P14
and, similarly,

q’pz = p2q
and

q'p3 = p3q

If one of the elements Py; Py, Pg is not zero, the proof of the theorem is complete.

Now, suppose that

Py =py=0
then
e1+i=e2k-e3j
Also
p2=e1k —e31+e3e1 -ik=e3(e1 —i)+ (e1 —i)k=0
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since
-1_ & _

k™" = k/N(k) = -k

then
(el - i) = e3(e1 - i)k = egk + eg]
From

e1+i=e2k—e3j

is obtained
i = "e3j

which implies that eq = k. Similarly, if

Py =pg=0
then
i=ey
and if
pPg=p =0
then
i=eg

Thus, if Py =Py = Pg = 0, then 6' must be the identity mapping and p= 1. This com-
pletes the proof of the theorem. This theorem is discussed in reference 11,
pages 257-259,

Theorem 13: The collection of all automorphisms on Q form a multiplicative
group of linear orthogonal transformations on Q.
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Proof: Let G be the collection of all automorphisms on Q. By theorem 12,
the elements of G are linear transformations of the form Tp where p is afixed
nonzero quaternion and

_ -1
qu—pqp

for all q in Q. First, note that G is closed under multiplication — that is, suppose
Py, Py are fixed nonzero elements of Q; then for any q in Q

. — - -1 —1)
q(Tpl sz) (qu]_)Tp2 (pzpl)Q(Pl p2
But

-1 -1 - - - — -1
Py Py = pIPZ/N(pIPZ) = p2p1/N(p1p2) = (p2p1)

and, hence,

Tplsz ) Tp2p1

sothat G is closed. Similarly,

aTy, [(sz-Tps)] =q [(Tpl-'rpz)'rp?]

for fixed nonzero elements Py; Py, Pg and q in Q. Thus G is associative.

Now, T1 isclearlyin G. If T is any elementof G and ¢ is an arbitrary

element of Q, then

p

q(Tl-Tp) =qT,,

and, therefore, T1 is the identity in G. Finally, since each element of G 1is a non-

linear transformationon Q, T -1 exists for each T, in G. Hence G is a multi-

p
plicative group of linear transformations on Q.

Note that for all q in Q and each Tp in G,
{aT,, aT = N(pap~?) = N@ = <q, @>
PR ’

Thus G is a group of linear orthogonal transformations on Q.
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As for theorem 5, note that
Q=1 1t

where 1 is isomorphic to the field of real numbers. Furthermore, from the construc-
tion of Q, it is isomorphic to the real Euclidean vector space of dimension three.
Denote IL by Eg. Then every element in Q is of the form

q=r+v

where r isin I and v in E3.

Theorem 14: Let G be the group of all automorphisms on Q. Then (1) the ele-
ments of I are invariant under the transformations of G and (2) G defines the group
of all rotations on E 3-

Proof: That the elements of G leave the elements of I fixed is clear since
each r in I is of the form @-1, where « is real. Thus, for each r in I and

Tp in G,

rTy = p(oz~1)p'1 =r

and, hence, for any gq=r+v in Q and Tp in G,

1

qT_ =71 + pvp_

P
Consider the effect of an element in G on an element of E3. Let
p= ao-l +aql+ ag] + a3k
be any fixed nonzero element of Q, and let

v=xi+yj+zk

be an arbitrary element of Eg. Then

va = pvp"1 = fq(lp-)-[pvﬁ:]

Expanding this expression shows that vT_ is in E3. Since T, is an orthogonal

P p
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transformation, T, defines either a rotationon Eg or a rotation followed by a

reflection on E3. Let

vi=x'i+y'j+ 2%k

denote the vector in E 3 such that

From the expansion of va

transformation:
. 2 2 2 2
b'e (ozo+ @y - ay - as) 2(a1a2 - a0a3)
1 2 2 2 2
y' | = m 2(a2a1 + oz3a0) (ozo + Qg - Qg - ozl)
z' 2(013011 - azao) 2(022013 + ozoozl)

Let m(Tp) denote the matrix of the transformation
A(p) = N(p)-m(Tp)
Since the determinant of m(Tp) is given by

det En (Tp)] = 11

then

det A(p) = +N(p)®

2(a1a3 + aoaz)

2(a2a3 - ozoozl)

(a2 + o2 - o} - of)

results the following matrix representation of this

-
y|= m(Tp) y
Z z

T .

d let
Tpan e

Inasmuch as det A(p) is a polynomial in @y, @y, Ay, @3, itisa continuous function

from

{r*- (0, 0,0, 0)}
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to R and is either always positive or always negative. That is, suppose there exist
fixed nonzero quaternions py and Poy such that

det A(p;) >0
and
det A(py) <0
Since
{R4 - (0, 0, 0, 0)}

is connected, it is shown by the intermediate value theorem (ref. 12, p. 322) that there
exists a P3 in Q such that

det A(pg) = m(p3)3 =0

But this expression implies that pg = 0 which is impossible since Pg = 0 is not in the
domain of det A(p). Therefore,

det En(Tp)] =1

for all Tp in G or

]

-1

det En('rp)]

for all Tp in G. Now consider Tp' in G defined by
p'=cqa-1

Then clearly det A(p') = ab = +N(p')3 and is positive for all transformations in G.
Therefore,

det En('rp):l = +1

for all Tp in G. Hence G is a group of rotations on E3.

It is now shown that G 1is the group of all rotations on E3. Let R denote any
rotation on E 3 From analytic geometry R can be defined by the direction cosines of
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the axis of rotation together with the angle of rotation about that axis.

Let ¢

n, and ¢

denote the direction cosines of the axis of rotation with the X, Y, and Z axes, respec-
tively. Also, let w denote the angle of rotation. Whittaker (ref. 13, p. 7) has shown

that R has the following matrix representation:

L 2(t - ¢)sin22

2 sin & sin ¥ - £cos & 2w
2(‘5" 5 ~Ccosy

2 sin é‘i(gt sin 29+ 7 cos -2°3> 2 sin —2“3(7]@ sin 29 - £cos 22)

This matrix is precisely the matrix obtained when

= w
ao = (3052
0!1= —g Sj.nz2

Qg = -1 sinz2

and

ag=-¢ sin%"-

1-2(1- n%)sin 2 2 sin

SIS

2

2 sin g)-(gn sin 22+ ¢ cos 29> 2 sin ZE(K sin £ _ 7] COS %)
W w
sin — cos —

(nt 2+£ 082)

1- (1 - cz)smzzﬁ

are substituted in the expansion of va = pvp"1 previously given. Now Qy, @y, 09, Qg

cannot all be zero since
2ane?=1

Thus, a fixed nonzero quaternion is found — namely,

p=coszﬁol—gsinzgi-nsini"-j—tsingk

2
such that

va =VR

Hence R isin G and the proof of the theorem is complete.

42

2



Corollary: The most general rotation of a vector v in Eg can be defined by

= -1
va = pvp

where

w,

p=cos

1 - sin 22(51 + 7j + €K)

£, m,and ¢ are the direction cosines of the axis of rotation with the X, Y, and
Z axes, respectively, and w is the angle of rotation about the axis.

CHARACTERIZATIONS OF QUATERNIONS

Some of the properties and characterizations of Q which follow from the theorems
of this paper are now given.

(1) Multiplication on Q in Gibbs notation (see ref. 14, pp. 403-429): Let vy v2:|
denote the vector cross product of elements in E3. Then by the rule of multiplication
defined on Q, it can readily be established that

@) Vivy = =V Vol [y Vg
Hence, for all qq =Ty +Vy and Qg =Ty + Vo,
(b) 4449 = (rlr2 -V V2>-1) + (rlv2 + TV + [Vl’ V2:|)
The relationships (a) and (b) yield the following interesting identities:
(c) ViVg + VoVq = -2 Vo v2>-1
V{Vg - VgVq = 2 [Vl’ v2]
V1dp - 92¥1 = 2[Vyp Vg
and

q19p - 9293 = 2[Vy» Vg
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(2) By theorem 10, Y(q)=G@=r - v is an involutionon Q for all q=r+v
in Q, g being defined as the conjugate of q. Thus,

T(a)-1=q+q=2r
N(a)-1=qq=qq
ap + fp = ap + A
and
Pq = qp

for all p,q in Q andreal g B.

(3) First regular representation of Q: Let
q= ao-l + ali + a2j + a3k
For some p in @ the linear transformation Rp is defined by
qu =4qp
for all q in Q. Then from theorems 8 and 9
q — onR1 + 0lei + ozsz + oz3Rk
and
q — aom(Rl) + alm(Ri) + azm(Rj) + a3m(Rk)
As an example, m(Ri) is given by
IR; =1=01+1i+0j+0k
iR; =i2 = -1+ 0+ + 0-j + Ok
R{=ji=01+0i+0j-~k
kR =ki=0:1+01+j+ 0k
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Thus,

o O w™ O

o - O O

o O o 9

- O O O

- O o O

and, hence,
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(4) Second regular representation of Q: In a manner similar to that for the first

regular representation,

q — ozoL1 + alLi + azzLj + oz3Lk

q — aom(Ll) + alm(Li) + azm(Lj) + oz3m(Lk)

ith
wi Lp
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= O © o

o = O O

o © o =

o O = O

being defined by qu= pg forall q in Q. Thus,

0
0
0
1

]



and, hence,

%o * Ag ag

e %o ag “Qy
q —

—0!2 —oz3 &0 (11

-oz3 (12 —(11 ozo

(5) Rotations: The Euler angles ¥, 6, ¢ provide the most widely used technique
for describing a rotation in Eg. Let Oxyz denote a right-hand system of rectangular
axes fixed in space and let v denote any vector in this system. In theorem 14 it was
shown that any rotation of v can be defined by

= -1
va = pvp

where p is some fixed nonzero quaternion
p= ozo-l + ozli + azj + oz3k

This rotation can also be described by three successive Euler angle rotations. The
relationship between the quaternion components @y @y, 09, Qg and the Euler angles
Y, 8, ¢ 1is now derived.

Let R Sys-

denote a rotation of Y about the Z-axis, which rotates the oxy z

¥,z

tem into the 0X system, and let

1Y1%

VRW

=V
2 1

Then, by the corollary of theorem 14, there is a fixed nonzero quaternion p,; such that

- = -1_
VRW,Z = va1 =pPqvP; =Vy

where

= i. - gi £
Py c0521 sm2k
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Similarly, let
: 0 -0
Royy F Oxgyyz T Oxygzy
such that
VlRe,y1 =V
Then there exists a Py in Q such that

_ _ -1_
ViRe,y, = V1Tp, = P2¥1P2 = V2

where
_ 0 . 6.
p, = coS 5-1 - sin E]
Finally, let
R(ﬂ,X' : Ox'y]_z]_ - OX'y'Z'
such that
VZRH,X' = V'

Then, there is a Pg in @ such that
voR =v,T =pvp'1=v'
270,x' 2 3 3°2%3
where
pg = cos -292-1 - sin é‘ei
The total rotation of a vector v in 0Xyz into v' in Ox'y'z'
1_

va =pvp T =vV'

where p is some fixed nonzero quaternion

p= 010-1 + ozli + ozzj + a3k
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Since
V' = D3Py (1’1"'1?’1-1)1’2_193—1
then
P = Pgbgbq
and, hence

p= (cos -24“3-1 - sin éei)(cos g-l - sin —g-j)(cos -gi-l - sin zik)

Expanding the right-hand side of this expression gives the following relationships between
the quaternion components and Euler angles:

@y = cos-zim-cosgcos-;k+ sin-zlw-singsin-za’e
ozl=cos-2"esingsin-2-’£- sin-;ecos-g-cos-za74
Qg = —cos-zl‘esingcos-;k- sin:fzﬂcos-g-sin--12
Qg = -COS -2'“3cos %sing2+ sin-é(esin-g-cos-;e

The rotation of v into v' has the following matrix representation in terms of the
Euler angles (ref. 15):

x' cos Y cos 6 cos 0 sin ¥ -sin 6 7 X
y'|={cos ¥ sin @ sin ¢ - cos ¢ sin ¥ sin ¢ sin 6 sin Y + cos Y cos @ singcos 8|y
z' cos ¢ sin 9 cos Y + sin ¢ sin Y cos ¢ sin 6 sin Y - sin ¢ cos ¥ cos ¢ cos 6| z

Since the Euler transformation is identical to the quaternion transformation, the following
additional relationships are easily determined:

49



2 (alaz - aoqs)

2 2 2 2

Y= tan~1

N(p)

. sin'l[-z(a1a3 + ozoozzz]

o - tan-1 2(012013 - ozoozl)_

2 2 2 2
("0*“3'“1“"2)

This subject has been discussed in detail in references 15 and 16.

(6) Rate equations (see also refs. 15 and 16): Suppose that the system Ox'y'z' is

rotating with an angular velocity w. Let
w=pi+qj+rk

where p, @, and r are the angular velocities about the X', Y', and Z' axes,
respectively. The Euler angle rates are expressed as follows (ref. 15):

. N » ] ’_. ]
Fz,b 0 sin ¢/cos 6 cos @/cos @ p
o |=10 cos @ -sin @ q
¢J 1 sin ¢ sin ¢/cos 8 cos ¢ sin 6/cos QJ |

The obvious disadvantage of this system of equations is the singularity existing at
6=(2n-1)g n=12,...)
It is now shown that no such problem exists in the corresponding rate equations for
the quaternion components. Suppose that the quaternion ¢q is a function of the scalar

quantity t — that is,

q = qt) = w(t)-1 + x(@)i + y(t)j + z(t)k
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Then analogous to the definition of a derivative in the Euclidean vector space of dimen-

sion three, define

dg(t) _ lim q(t + At) - q(t)
dt ~ At-0 At

or
d d d . d .. d
—qal) = — 1)1 + —x(t)i + — y(t — z(t)k
dtq() dtw() dtx() th()J+dtz()

From this expression it follows that

d _ (4 d
at (11%2) (dt ql) d27 ql(dt q2)
Now let Tp be the quaternion transformation rotating the vector v in Oxyz

into v' in Ox'y'z' — that is,

= va = pvp'1

where p and v are functions of t. Furthermore, let Ox'y' 2! be rotating with an
angular velocity w as defined previously. Finally, define the quaternion

A= 7\0-1 + Ali + Azj + )\3k

by
y= P =P
el + /NG
where
! .
)\izm i=0,1,2 3
Then
t — — -1 - N
v' = va = pvp T = AVA
and, also,
v= V'Tp—l = p'1 V'p = AV'A
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From this relationship, the following matrix representation for Tp is obtained:

—

Ag + A% - xg - Ag 2()\1>\2 - A0x3) 2()\1A3 + }\0)\2)
2()\2?\1 + )\3AO) )L?“) + Ag - )\g - A% 2(7\2)\3 - )\OAI)
2(7\3)\1 - AZAO) 2(A2A3 + )\0)\1) )\(2) + )\g - Af - ;\g

From theoretical mechanics (ref. 17, pp. 141-146) is found the following

relationship:

1

d dv' '
(%) =-;’—t+[w,v:]

L4
where dv is a vector in the 0 or fixed system and dv denotes the vector av
dt Xyz dt dt
relative to the moving system Ox'y' Zt Hence in terms of the quaternion transforma-
tion Tp, the relationship can be expressed as
A}
dv dv av'
— T = — = =— 4 w '
(dt) P (dt) at " L]
Now,
av\r - » i(Xv')x) A=d —q—X)V' +v' i)\)i
a /P dt dt dt dt
Since X =1,
dv dav’ d \\+ d \\+
—I|T =— -[=AJAV'+V'{=2A|2
(dt) P at (dt ) (dt )
Thus,

l:w, V':l = '(aqt- )\)X - ((—% 7\) awv!

Note that for any A in Q

where r* isin I and v* isin Eg. Then, from (c) of property (1) is found

[w, v'] = -2 Ev*, vj
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or

[w + 2v¥, VEI =0

Since this expression is valid for all v' in Eq and since the vector cross product is

nondegenerate,

w = -2v*

Finally,

Again, since Ax =1,

Thus,
d -
= -2[=—2x
o= 2
or
d
— A= - = WA
dt 2

— — — —_ -

2o 0 -p -q -r (12
5\1 1 p 0 -r al|r
5\2 2 q r 0 |2y
Ag r -q p 0 Ag



Equivalently,

) Ay A9 Agllp
Ay 1 2 Az Ay
. | = 2 qa
Ay A3 20 A
3 | 2 M || * ]
where
f.o=9 i=0,1,2, 3)
1 dt i I b 3
Note that the substitution
A= —E

+ /N(p)

1 and applying the constraint

is equivalent to using vT _ = pvp~

p
pp=N() =1

Normally, direction cosines are used to avoid the problem of gimbal lock, How-
ever, this involves the three Euler angle differential equations being replaced by six
direction cosine differential equations with three algebra equations and three constraints.
On the other hand, representing rigid-body rotations with quaternions involves only four
differential equations with one constraint.

RESUME

Some characterizations and properties of linear algebras over the field of real
numbers are as follows:

1. Every real algebra is a normed algebra and every real absolute valued algebra
is a division algebra.

2. Given a real absolute valued algebra without associativity of multiplication, one

is not assured of the existence of an identity element. However, multiplication can be
redefined in such a way that the resultant algebra is an absolute valued algebra with

identity.
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3. The algebra of real quaternions is a unique associative division algebra which
is isomorphic and anti-isomorphic to algebras of real n Xn matrices.

4, The collection of all automorphisms on the algebra of real quaternions defines
the group of all rotations on the real Euclidean vector space of dimension three. The
advantage of representing rigid-body rotations with quaternions is in the elimination of
the gimbal lock problem encountered when using Euler angles.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., September 14, 1966,
125-23-02-04-23.
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